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Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded

domain. II. Inertial models
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We propose a general kinetic and hydrodynamic description of self-gravitating Brownian particles in d
dimensions. We go beyond the usual approximations by considering inertial effects and finite-N effects while
previous works use a mean-field approximation valid in a proper thermodynamic limit (N— + ) and consider
an overdamped regime (é— + ). We recover known models in some particular cases of our general descrip-
tion. We derive the expression of the virial theorem for self-gravitating Brownian particles and study the linear
dynamical stability of isolated clusters of particles and uniform systems by using techniques introduced in
astrophysics. We investigate the influence of the equation of state, of the dimension of space, and of the friction
coefficient on the dynamical stability of the system. We obtain the exact expression of the critical temperature
T. for a multicomponents self-gravitating Brownian gas in d=2. We also consider the limit of weak frictions,
£—0, and derive the orbit-averaged Kramers equation.
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I. INTRODUCTION

Self-gravitating systems such as globular clusters and gal-
axies can be considered as a collection of N stars in gravita-
tional interaction whose dynamics is described by the Hamil-
ton equations of motion [1]. In statistical mechanics, this
situation is associated with the microcanonical ensemble
where the energy and particle number are fixed [2,3]. In a
recent series of papers [4—11], we have proposed to consider
a system of self-gravitating Brownian particles which are
subject, in addition to the gravitational force, to a friction
and a noise. Their dynamics is described by N-coupled sto-
chastic Langevin equations. In statistical mechanics, this
situation is associated with the canonical ensemble where the
temperature and particle number are fixed [12]. In previous
papers, we have considered a mean-field approximation valid
in a proper thermodynamic limit with N — 400 and, in order
to simplify the problem, we have studied a limit of strong
friction é— +° or, equivalently, a large-time regime > &1,
In these approximations, the problem is reduced to the study
of the Smoluchowski-Poisson (SP) system. We have also in-
troduced a generalized class of stochastic processes and ki-
netic equations in which the diffusion coefficient (or the fric-
tion and mobility) is allowed to depend on the concentration
of particles [13—17]. This can model microscopic constraints
(e.g., close packing) acting on the particles when their local
concentration becomes large. The evolution of the system is
then described by the generalized Smoluchowski-Poisson
(GSP) system involving a barotropic equation of state p(p)
specified by the stochastic model. This mean-field nonlinear
Fokker-Planck (MFNFP) equation admits a Lyapunov func-
tional, determined by the equation of state, which can be
interpreted as a generalized free energy [13]. Thus, this

*Electronic address: chavanis @irsamc.ups-tlse.fr
"Electronic address: clement.sire @irsamc.ups-tlse.fr

1539-3755/2006/73(6)/066104(13)

066104-1

PACS number(s): 05.90.+m

model is associated with a notion of (effective) “generalized
thermodynamics” in w space. In the classical case where the
diffusion coefficient is constant, we recover an isothermal
equation of state p=pkgT/m associated with the Boltzmann
free energy but more general equations of state can be con-
sidered. Interestingly, the same type of drift-diffusion equa-
tions are encountered in mathematical biology to describe
the chemotactic aggregration of bacterial populations, in re-
lation with the Keller-Segel model [18-20]. The analogy be-
tween self-gravitating Brownian particles and bacterial popu-
lations is developed in [9].

Here, we propose to generalize these models so as to take
into account finite-N effects and inertial effects (finite fric-
tion &). We thus propose a general kinetic and hydrodynamic
description of self-gravitating Brownian particles starting di-
rectly from a system of N coupled Langevin equations of
motion with long-range attractive interactions. We shall ex-
tend the techniques developed in astrophysics to our problem
of self-gravitating Brownian particles. In particular, we shall
derive the appropriate expression of the virial theorem for
these systems and study their linear dynamical stability by a
method similar to that developed by Eddington [21] and
Ledoux and Walraven [22] for barotropic stars described by
the Euler equations. We shall make the link between para-
bolic and hyperbolic models by considering an intermediate
model, taking into account the inertia of the particles as well
as a friction force. The Euler equations are recovered for &
=0 and the Smoluchowski equation is obtained in the limit
E— +,

The paper is organized as follows. In Sec. II, we introduce
general kinetic and hydrodynamic models of self-gravitating
Brownian particles starting from coupled Langevin equa-
tions. We derive the N-body Fokker-Planck equation (Sec.
IT A), the mean-field Kramers equation (Sec. II B), and the
generalized mean-field Kramers equation (Sec. I C). Then,
we take the hydrodynamic moments of these equations and
derive the damped Jeans equations (Sec. IID) and the
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damped barotropic Euler equations (Sec. II E) by closing the
hierarchy of moments with a local thermodynamical equilib-
rium (LTE) hypothesis. We obtain the mean-field Smolu-
chowski equation in a strong-friction limit é&— + and, in
Sec. I F, we derive the orbit-averaged Kramers equation as a
weak-friction limit £é— 0. In Sec. III, we establish the general
expression of the virial theorem for self-gravitating Brown-
ian particles from the damped Jeans equations (Sec. IIT A)
and from the damped Euler equations (Sec. III B). We also
consider the effect of correlations due to finite-N effects
(Sec. III C). In Sec. IV, we study the linear dynamical stabil-
ity of an inhomogeneous stationary solution of the damped
barotropic Euler-Poisson system and investigate the effect of
the friction coefficient on the evolution of the perturbation.
In Appendix A we give a short complement concerning the
stability of polytropic systems, and in Appendix B we derive
the exact expression of the virial theorem starting directly
from the stochastic equations of motion. We show that the
virial theorem takes a very simple form in dimensions d=2
and d=4 and analyze the consequences of this simplification.
In Appendix C, we study the linear dynamical stability of
homogeneous stationary solutions of the damped barotropic
Euler equations (for an arbitrary potential of interaction) and
obtain a generalization of the Jeans instability criterion. In
the Conclusion, we discuss the different regimes in the evo-
lution of Hamiltonian and Brownian systems with long-range
interactions [12], distinguishing the phase of violent colli-
sionless relaxation, the collisional evolution due to finite-NV
effects, and the “collisional” evolution due to imposed fric-
tion and stochastic forces for Brownian systems.

II. KINETIC AND HYDRODYNAMIC MODELS OF SELF-
GRAVITATING BROWNIAN PARTICLES

The Smoluchowski-Poisson system that has been exten-
sively studied in previous papers [4—11] describes a gas of
self-gravitating Brownian particles in a mean-field approxi-
mation (valid for N— +) and in a strong-friction limit &
— +0. In this section, we introduce more general kinetic and
hydrodynamic models of self-gravitating Brownian particles
that go beyond these approximations.

A. N-body Fokker-Planck equation

Basically, a system of self-gravitating Brownian particles
is described by the N coupled stochastic equations

dr;

E :Vis (1)
dVl‘ ’/_
EZ—gvi—mViU(r], ,rN)+V2DRi(t), (2)

where —&v; is a friction force and R;(7) is a Gaussian white
noise satisfying (R;(1))=0 and (R, ()R, ;(t'))= 8;;0,,8(t~1"),
where a,b=1,...,d refer to the coordinates of space and
i,j=1,...,N to the particles. We define the inverse tempera-
ture B=1/kgT through the Einstein relation é=DBm (see be-
low). For £=0 and D=0, Egs. (1) and (2) reduce to the
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Newton-Hamilton equations of motion describing the ordi-
nary self-gravitating gas with a Hamiltonian

N

H=, %mviz+m2U(r1, Ty, (3)

i=1

where U(ry,...,ry)=2,cu(r;-r;) and u(r;-r;)=-G/[(d
—2)|r;=r;|“?] denotes the gravitational potential of inter-
action in d dimensions [u(r;—r;)=G In|r;—r;| for d=2]. In
this paper, we shall be particularly interested in the gravita-
tional interaction, but we stress that our formalism remains
valid for a more general class of binary potentials of inter-
action of the form u(|r;—r;|). The evolution of the N-body

distribution function is governed by the Fokker-Planck equa-
tion [12]

IPy N( IPy aPN>
v, —N4F, —2

— + + i
a0 or; av;
N
J JP
=E_{D_N+§PNV1]- 4)
i=1 9 v;

In the absence of friction and diffusion (é=D=0), it reduces
to the Liouville equation. The Liouville equation conserves
the energy (E)=[PyHIl,dr;dv; and the Gibbs entropy S
=—kg [ Py1n Pydrdv,---drydv, (more generally, any func-
tional of Py) defined on I' space. This corresponds to a mi-
crocanonical description. Alternatively, in the Brownian
model, the temperature 7T is fixed (instead of the energy) and
the Fokker-Planck equation (4) decreases the Gibbs free en-
ergy F=(E)—TS which can be written, explicitly,

F[Py]= f PyHI [ dridv, + kT f Pyln Py] ] dr.av,.

(5)

This corresponds to a canonical description. One has

A AN 2
F==Y | — D=2+ ¢Pyv,]| dridv, - drydvy <0O.
o1 J EPy\ 9,

(6)

Therefore, the free energy plays the role of a Lyapunov func-
tional for the N-body Fokker-Planck equation. At equilib-
rium, F=0 implying that the right-hand side (RHS) of Eq.
(4) vanishes. The LHS (advective term) must also vanish
independently. From these two requirements we find that the
stationary solution of Eq. (4) is the canonical distribution’

'In order to properly define a strict statistical equilibrium state for
self-gravitating systems, one has to introduce a small-scale regular-
ization; otherwise, F[ Py] has no minimum and Eq. (7) is not nor-
malizable. Thus, in Eq. (7), it is implicitly understood that U is a
regularized potential. Note that physical statistical equilibrium
states unaffected by the small-scale regularization exist in the form
of long-lived metastable structures that are /ocal minima of the
Boltzmann mean-field free energy Fp[f] defined in Eq. (13). We
refer to [23] for a physical discussion of these issues.
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e—,Bm[Ef—ilv%/2+mU(rl,...,rN)]’ 7)

PN(rl’Vl? ,I‘N,VN) =

Z(B)

provided that the coefficients of diffusion and friction are
connected by the Einstein relation é=DpBm. The partition
function Z(B) is determined by the normalization condition
JP\ILdr;dv;=1. The canonical distribution (7) minimizes the
free energy F' at fixed particle number. Introducing the re-
duced probability distributions

Pj(xl’ . ,X‘) = f PN(Xl’ ’XN)de+1 te dXN, (8)

where x=(r,v), we can readily write down a hierarchy of
equations for Py, P,, etc. The first equation of the hierarchy
is

apP, apP, apP,
?+V1~ﬁ—rl+(N— 1)JF(2—> 1)-a—VIdI‘2dV2
-~ -[D—&P‘ +§P1v1], )
vy av,

where F(2—> 1)=—I’I’l(91/l12/(9r1 =Gm(r2—r1)/|r2—r1|d is the
force (by unit of mass) created by particle 2 on particle 1.
Note that this equation is exact (i.e., valid for all N) and takes
into account the correlations between the particles encapsu-
lated in the two-body distribution function P,. For D=¢=0,
we recover the first equation of the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy. We shall give the form
of the virial theorem associated with Eq. (9) in Sec. III C.
Before that, we consider the mean-field limit of this equation
valid for N— +0°.

B. Mean-field Kramers equation

In a properly defined thermodynamic limit [12], we can
show that the cumulant of the two-body correlation function
is of order 1/N. Therefore, for N— +%, we can implement
the mean-field approximation

Py(ry,v,,12,V5,1) = Py(ry,v,1) P (1), V,,1) + O(1/N).
(10)

Substituting this result into Eq. (9) and introducing the dis-
tribution function f=NmP,, we obtain the mean-field Kram-
ers equation

o P At
at or av  dv av

where ®(r,f)=fu(r-r")p(r’,1)dr’. This equation is nonlo-
cal because the potential ®(r,r) is induced by the density
p(r,t)=[fdv of the particles composing the whole system (it
is not an external potential). Thus, for self-gravitating sys-
tems, Eq. (11) has to be solved in conjunction with the Pois-
son equation

AD =S,Gp. (12)

In the absence of friction and diffusion (D=£¢=0), the mean-
field Kramers equation reduces to the Vlasov equation [1].
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The Vlasov equation conserves the energy E=% [ fvdrdv
+% Jp®dr and the Boltzmann entropy Sp=—[(f/
m)In(f/m)drdv (more generally all the functionals of f
called the Casimirs) defined on u space. Alternatively, the
Kramers-Poisson (KP) system (11) and (12) involves a fixed
temperature and decreases the Boltzmann free energy Fp
=E-TSy which can be written explicitly

1 1
Fylf =5va2drdv+5Jp(1)dr+kBTf iln idrdv.

m m
(13)

Indeed, one has

1= [ glog o)
Fg=—| —|D—+ &V | drdv=<0. (14)
&\ ov

At equilibrium, Fp=0, implying that the RHS of Eq. (11)
vanishes. The LHS (advective term) must also vanish inde-
pendently. From these two requirements and using the Ein-
stein relation, we find that the stationary solutions of the
Kramers-Poisson system (11) correspond to the mean-field
Maxwell-Boltzmann distribution

f=A e—Bm[v2/2+<I>(r)], (15)

which has to be solved in conjunction with the Poisson equa-
tion (12). The stable mean-field Maxwell-Boltzmann distri-
bution minimizes the Boltzmann free energy Fplf] at fixed
mass. It is both thermodynamically stable (in the canonical
ensemble) and linearly dynamically stable with respect to the
KP system [13]. We note that the equilibrium one-body dis-
tribution function (15) can be obtained from the N-body ca-
nonical distribution (7) by constructing an equilibrium
BBGKY-like hierarchy and implementing a mean-field ap-
proximation [12]. On the other hand, the Boltzmann free
energy (13) can be deduced from the free energy of the
N-body system (5) by making the mean-field approximation
PN(I 5 een ,N)=Hl'P1(i) [12]

C. Generalized nonlocal Kramers equation

For sake of generality, we shall consider the case where
the diffusion coefficient explicitly depends on the distribu-
tion function. Thus, in Eq. (11), we set D(f)=DfC"(f) where
C is a convex function—i.e., C"=0—and D is a constant. In
that case, we obtain the generalized mean-field Kramers
equation [13]

of

of . of a_a. n &
m+vlﬁ_v®'w_av{uﬂwﬁm+§ﬁ}

(16)

This equation can be obtained in the mean-field limit of a
generalized N-body Fokker-Planck equation associated with
a generalized class of stochastic processes of the form (1)
and (2) where the diffusion coefficient depends on f(r;,v;,1)
[12]. For C=f1In f, we recover the classical Kramers equa-
tion (11). However, Eq. (16) can describe more general situ-
ations such as quantum particles with exclusion or inclusion
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principles (fermions, bosons, quons), lattice models, non-
ideal effects, etc. These generalized Fokker-Planck equations
are associated with an effective thermodynamical formalism
(ETF) in u space [13]. In particular, the generalized
Kramers-Poisson (GKP) system decreases the free energy

2
Flfl=E-TS= f f%drdv+% f oddr + T f C(f)drdv,
(17)

where the last term can be interpreted as a generalized en-
tropy S=—JC(f)drdv and we have defined the effective tem-
perature T=1/p through the relation ¢&=D/T (effective Ein-
stein relation). One has

: 1 o Of :

F=—| —|DfC"(f)— + &v | drdv < 0. (18)
&f av

At equilibrium, we find that the stationary solutions of the

generalized Kramers equation (16) are determined by the

integro-differential equation

")
C'(f):—ﬂ<3+q)>—a, (19)

where ®(r,1)=fu(r-rx")f(r',v’,t)dr'dv’. Since C is con-
vex, this relation can be inverted to give f=F(Be+a) where
F(x)=(C")"'(-x) and e:%2+(l>(r). We note that the equilib-
rium distribution determined by Eq. (19) is a function f
=f(e) of the individual energy € alone which is monotoni-
cally decreasing (for 8>0). This equilibrium distribution
function extremizes the free energy (17) at fixed mass. Fur-
thermore, only a (local) minimum of free energy is linearly
dynamically stable with respect to the GKP system [13].

D. Damped Jeans equations

We shall now determine the hierarchy of moment equa-
tions associated with the generalized Kramers-Poisson sys-
tem. Defining the density and the local velocity by

p:ffdv, pu:ffvdv, (20)

and integrating Eq. (16) on velocity, we get the continuity
equation

ap

—+V-(pu)=0. 21

L4V (o) e
Next, multiplying Eq. (16) by v and integrating on velocity,
we obtain

d d aP; 0P
_- . —_ U il

u;) + uu;) =— - - épu;, 22
o (P axj(p ) o Pox, ép (22)

where we have defined the pressure tensor

Pij=ffWindV, (23)

where w=v—u is the relative velocity. In the absence of
diffusion and friction (D=¢£=0), we recover the Jeans equa-
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tions of astrophysics, which are derived from the Vlasov
equation [1]. For self-gravitating Brownian particles, the
equivalent of the Jeans equations (21) and (22) includes an
additional friction force —&u. Using the continuity equation,
Eq. (22) can be rewritten

ou; &ui) JP; 9D
— 4+u— | =- —-—p_ - U;. 24
p( a M ox; dx; Pox, Epuy )

E. Damped barotropic Euler equations

By taking the successive moments of the velocity, we can
obtain a hierarchy of hydrodynamical equations. Each equa-
tion of the hierarchy involves the moment of next order. The
ordinary Jeans equations that are based on the Vlasov equa-
tion are difficult to close because the Vlasov equation admits
an infinite number of stationary solutions. Therefore, a no-
tion of thermodynamical equilibrium is difficult to justify in
the usual point of view (see, however, [24] in the context of
the theory of violent relaxation). In the present case, the situ-
ation is simpler because the Kramers equation admits a
Lyapunov functional (17) and a unique stationary distribu-
tion defined by Eq. (19). If we are sufficiently close to equi-
librium, it makes sense to close the hierarchy of equations by
using a condition of local thermodynamic equilibrium. We
shall thus determine the pressure tensor (23) with the distri-
bution function f; 7 defined by the relation

w2
C/(fLTE)=—ﬁ[?+)\(rJ)]~ (25)

This distribution function minimizes the generalized free en-
ergy (17) at fixed temperature T, local density p(r,z), and
local velocity u(r,7). The function \(r,z) is the Lagrange
multiplier associated with the density field. It is determined
by the requirement

p(r,1) = ffLTEdV = p[\(r,0)]. (26)

At equilibrium, we recover the distribution function (19)
with u(r)=0 and \(r)=®(r)+ a/B. Using the condition (25)
of LTE, the pressure tensor (23) can be written P;;=pd; with

1
p(r,n) = 3 ffLTEWzdw =p[A(r,0)]. (27)

The pressure is a function p=p(p) of the density which is
entirely specified by the function C(f), by eliminating \ from
the relations (26) and (27). We note furthermore that, using
Eq. (25) and integrations by parts, the previous equations
(26) and (27) easily lead to Vp:éf%rzwzdwa];V)\ffwﬁwdw
=—VN\[fdw=-pVN\; hence, p’'(p)=—p\'(p). In the case of
Brownian particles described by the ordinary Kramers equa-
tion (11) with C(f)=f1n f, the equation of state determined
by Egs. (26) and (27) is the isothermal one p:k,fq—Tp. More
generally, we obtain the damped Euler equations for a baro-
tropic gas [13]:

ap

o TV (=0, (28)
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Jdu 1
—+u-Vu=--Vp-Vo - &u. (29)
p

ot

These equations decrease the free energy

1 2
Flp,u]= f J p(f)z dp'dr +2Jpq)dr+fpu?dr,

(30)

which can be deduced from the free energy (17) by using the
local thermodynamic equilibrium condition (25) to express
F[f] as a functional of p and u, using F[p,u]=F[f, 7] (see
[17] for details). A direct calculation yields

F:—gfpuzdr$0. (31)

At equilibrium, F=0, implying u=0. Then, Eq. (29) yields
the condition of hydrostatic balance:

Vp+pVd =0, (32)

which also results from Eq. (19). Indeed, for f=f(e) with €
=v?/2+®(r), one has p=[f(e)dv, p=[llff(e)v2dv so that

=§Jf’(e)V<I>v2dv

1 4
=—V¢J—f vdv
d d

\4

=—V<I>ffdv

=-pVO. (33)

The damped barotropic Euler equations (28) and (29) are
interesting as they connect hyperbolic models to parabolic
models. Indeed, for £=0 we recover the standard barotropic
Euler equations describing the dynamics of gaseous stars
[1,25-27] or the formation of large-scale structures in cos-
mology [28]. Alternatively, in the strong friction limit
£— 4+, we can neglect the inertial term in Eq. (29) and we
obtain

u=- L(Vp +pV®) + 0(£2). (34)
ép

Substituting this drift term in the continuity equation (28),
we get the generalized Smoluchowski equation [13]

ap

1
o =V. {E(Vp+pVCD)] (35)

This equation decreases the free energy
p(p’) 1

F[p]=fpf — g dp'dr+ 7
p 2

which is obtained from Eq. (30) by neglecting the last term
of order O(£7?). A direct calculation yields

f pddr, (36)

j —(Vp + pV®)%dr < 0. (37)
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It should be recalled that the damped Euler equations (28)
and (29) remain heuristic because their derivation is based on
a LTE assumption (25) which is not rigorously justified.
However, using a Chapman-Enskog expansion, it is shown in
[17] that the generalized Smoluchowski equation (35) is ex-
act in the limit £€— + (or, equivalently, for times > &),
The generalized Smoluchowski equation can also be ob-
tained from the moments equations of the generalized Kram-
ers equation by closing the hierarchy, using £é— +© (see Sec.
9 of [16]).

F. Orbit-averaged Kramers equation

We shall consider here the opposite limit of low friction,
£—0. In the case where the term on the RHS of Eq. (11) is
small, we can obtain a simplified equation for the evolution
of the distribution function by averaging the kinetic equation
over the orbits of the particles. In the case of Hamiltonian
self-gravitating systems described by the Landau equation,
this leads to the orbit-averaged Landau equation introduced
by Hénon [29]. We shall here derive the orbit-averaged
Kramers equation for self-gravitating Brownian systems.

Let us first rewrite the mean-field Kramers equation (11)
in the form

[ S
SV S =V = 0(f). (38)

We consider the case where §— 0 for fixed 8 so that é=D
=0 and the operator Q(f) can be considered as small. If we
take Q(f)=0, we obtain the Vlasov equation. We shall as-
sume that the system has reached a stable stationary distri-
bution of the Vlasov equation of the form f=f(e) which de-

pends only on the energy e:”§+<l>(r,t) of the particles. This
is a particular case of the Jeans theorem for spherical sys-
tems. Such a steady solution can arise from a process of
violent collisionless relaxation [30,12]. Since Q(f) # 0, the
distribution function will change due to the terms of friction
and diffusion that are present in the stochastic equation Eq.
(2).2 However, if &—0, this change will be slow so that the
latter forces cause only a small variation on the energy. We
shall therefore consider that f(r,v,7) = f(€,) remains a func-
tion of the energy alone that slowly evolves due to imposed
stochastic forces. Noting that

P
—f(e(r v,1),1) —&—]; O;—tjf (39)

we can rewrite the kinetic equation (38) in the form

’In the case of Hamiltonian systems where é=D=0, the distribu-
tion function changes due to finite-N effects representing close en-
counters between stars. These encounters are usually modeled by
the Landau operator [12] which is of order 1/N<<1 . On the other
hand, for self-gravitating Brownian particles the evolution is mod-
eled by the Kramers operator (obtained for N — +) which is of the
order &t (where ) is the dynamical time). The comparison be-
tween the evolution of Hamiltonian and Brownian systems with
long-range interactions is further discussed in the Conclusion of this

paper.
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&f a® Jf

—= 40

&t at de =20 40

Since f depends only on the energy, the system is spherically

symmetric. Then, the phase space hypersurface with energy
smaller than € is

q(er) = 1671'2f rdrv*dv
2p+d<e

rnmx(eﬂf)

= ﬁ [2(e— D)]*?rdr, (41)

3 Jo

where r,,,,(€,1) is the largest radial extent of an orbit with
energy € at time f. It is determined by the equation €
=®(7,,4., 1) corresponding to v=0. The previous relation can
be written more compactly as

16 77—2 Tmax

q(e1) = 5 viridr, (42)

0
where v=+2[e-®D(r,r)]. The phase-space hypersurface
g(e,1)de with energy between € and e+de is given by

r (€t
(7 max
gler) = A _ 16772J [2(e—- D)]"2r2dr
de 0

= 16772J vridr. (43)
0

Now, the density of particles in the hypersurface between e
and e+de is uniform since the distribution function depends
only on the energy. In fact, the system evolves on a short
time scale ~1,, by purely inertial effects [corresponding to
the advective terms in the LHS of Eq. (38)] so as to establish
this quasistationary regime where f= f(e,t). We shall there-
fore average the kinetic equation (40) on each hypersurface
of isoenergy using

Tmax

Xvrtdr
X)e) =~ (44)

rmax
vridr
0

for any function X(r,v,t). Thus, the orbit-averaged kinetic
equation can be written

max &f ﬁCI) af
167 f - 45
[ e Q(f)] 45)
The first term in the brackets is
Tmax (9 a (9 (9
16772] ParvZ —g(enX 1Y 4
0 at ot~ deor
Since
J Tmax 9P
A _ 16772f v—rdr, (47)

the second term in the brackets can be written
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Fmax b 9 dq 9
16772f Pary o229 (48)
0 Jdt de Jt de
Finally, since
d d
vQ(f)=D—[v3<—f+ﬁf”, (49)
Jde Jde

the last term in the brackets is
Tmax 6) 19
16#[ rzder(f)=3D—{q<—f+ﬁmf)] (50)
0 de Jde

Regrouping all these results, we obtain the orbit-averaged
Kramers equation

w_f_&_w_f_wi[ (&f )]

= -+ 51
dedt Ot de Jde i Jde pmf D)

Tmax(€1)
q(et) = —16;2[ {2le-®(r,0]Y"*dr,  (52)
0

19 0P

——(r —) = 167126] fle,N[2(e=D(r,0))]"*rde,
2 or ar (1)

(53)

where the last equation is the Poisson equation. It is easy to

verify that the free energy is monotonically decreasing (F
<0) and that the stationary solution of Eq. (51) is the Bolt-
zmann distribution f=Ae™P"¢. These equations will be stud-
ied in a future communication. Note also that in d=1, ¢
=$vdx, and g=2§dx/v, and in d=2, g=27[gw’rdr, and
g= 2172r

III. VIRIAL THEOREM FOR BROWNIAN PARTICLES
A. Virial theorem from the damped Jeans equations

We shall give here the form of the virial theorem appro-
priate to the damped Jeans equations (21) and (22). The only
difference with the standard Jeans equations is the presence
of a friction term. We shall thus only give the final result and
refer to [1] for the details of calculation. The damped virial
theorem can be written

1 dI;

1 d21
— g_i 2K

1
5 dt Wii— 5% (Pilcxj+ ijxi)dSk-
(54)

We have included boundary terms which must be taken into
account if the system is confined within a box. The tensor of
inertia /;; and the potential energy tensor W;; are defined in
paper L. The kinetic energy tensor is defined by

1
Kij=5ffvivjdv. (55)

It can be written as
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(56)

1
Kij = le + EHU’,

where
1
Note that the tensors K;; and P;; depend on the distribution

function f(r,v,f), not only on hydrodynamic variables. The
scalar virial theorem takes the form

LT ] fd] 2K+ W, P,x.dS (58)
——p —&— = + — X s
24 2°dt i @k
where [ is the moment of inertia and
1 2
=3 fvidrdv (59)
is the kinetic energy. It can be written
1
K=T+ EH’ (60)
where
1 2
=5 | pu dr, Il=d | pdr. (61)

In the absence of diffusion and friction (D=£=0), we re-
cover the usual expression of the virial theorem issued from
the Jeans equations [1]. For Brownian particles, the novelty
is the presence of a damping term &I.

As pointed out in paper I, the moment of inertia depends
on the origin O of the system of coordinates. Let R(r)
=(1/M) [ prdr denote the position of the center of mass with
respect to the origin O. Using the equation of continuity (28),
we find that MdR/dt=P where P=[pudr is the total im-
pulse. Using the Jeans equation (22), we find that dP/dr
=—¢P. In our case, there exists an absolute referential (R).
Indeed, in writing Eq. (2) we have implicitly assumed that
our Brownian particles evolve in a fluid that is motionless.
Otherwise, the friction force in Eq. (2) has to be modified
according to —£&(v;—U) where U is the velocity of the fluid
[17]. We must work therefore in this referential (R). If we
denote by P, the initial value of the impulse, we get P(z)
=Pye . If now R, denotes the initial position of the center
of mass with respect to O, we find that

R(1) =R, + ;—"g(l —e ), (62)

Therefore, at r— +0o0 the center of mass has been shifted by
a quantity Py/ME. In the strong friction limit §— +00, we
find that the center of mass is motionless (paper I).

B. Virial theorem from the damped Euler equations

The virial theorem associated with the damped barotropic
Euler equations (28) and (29) can be deduced from Eq. (54)
by using the fact that P;;=p(p)&;;. This yields

PHYSICAL REVIEW E 73, 066104 (2006)

1d%; 1 dI; 1 1
e —’Z:ZT»-+—H6»-+W--——§ Oux;
2 dt2 2§ dt ij d ij ij 2 p( zkxj
+ éjkxi)dsk’ (63)
1d* 1 .dl
S+ & =2T+I1+W;- O pr-dS, (64)
2dt 27dt

where each quantity is now expressed in terms of hydrody-
namic variables. At equilibrium, if no macroscopic motion is
present (7=0) and if we can neglect the boundary term, we
get

1

Wij=--114

j= = 118, (65)

In the absence of diffusion and friction (D=£=0), we re-
cover the usual form of the virial theorem issued from the
barotropic Euler equations [1]. Alternatively, in the strong-
friction limit £é— +%, we can neglect the term I in front of
&l. Furthermore, since the velocity field scales as u=0(&™),
the kinetic energy tensor 7;;=0(£2) can also be neglected.

Therefore, the virial theorem associated with the generalized
Smoluchowski-Poisson system (35) and (12) can be written

1 dl; 1
SE 4 = 2K+ Wy= f}g p(Syx; + 8yx;)dSy,  (66)

lgdl 2K+ W fﬁ ds (67)
—f— = + s .
2°dr T e
where
1 d
Kij = 2]{5[]’ = 5 pdl‘, (68)

is the expression of the kinetic energy to leading order in the
limit §— +c° where u(r,7) can be neglected. We thus recover
the results of paper I starting directly from the GSP system.

C. Effect of correlations

If we account for the effect of correlations (due to finite
values of N) between the particles and use the exact kinetic
equation (9), we obtain the exact damped Jeans equations

p
a—f+V~(pu)=0, (69)

d ) IP;; X! —x;
a—t(pui) + g(puiuj) =— &—xll +Gm? f ﬁpz(r,r’,t)dr’
J J

- &pu;, (70)

where we have introduced the spatial correlation function

pa(ry,r),1) =N(N - 1) f Py(r, V1,10, V5, 0)dvdv,. (71)

In the mean-field approximation p,(1,2)=p(1)p(2), we re-
cover the damped Jeans equations (21) and (22). The virial
theorem is now given by
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1d*; 1 dI; o1
5?4' 5521=2Kij+wfj —5§ (Pyx; + Pjx;)dSy.,
(72)
where
. Gm? Y — x!
W;.orrz — i J Pz(l‘,l")wdrdr’ (73)
4 2 [r—r’|

is a generalization of the potential energy tensor accounting
for correlations between particles. In the strong-friction limit
&— +00, the virial theorem reduces to

1 dI; w1
Ele = @jfpdﬁ Wi - > jg P(Gyx; + Opx;)dSy.

(74)

If we consider the case of Brownian particles with an iso-
thermal equation of state p=pkzT/m and if we focus on a
space with d=2 dimensions where

W =— GTmz J po(r,r")drdr' = - N(N - I)GTmZ,
(75)
the scalar virial theorem takes the form
lgd—l =2Nky(T - T,) - 2PV, (76)
2°dt
with a critical temperature
kpT,.= w (77)

These results are valid for an arbitrary number of particles.
For N> 1, using N—1=N, we recover the results of paper .

IV. DYNAMICAL STABILITY OF SELF-GRAVITATING
BROWNIAN PARTICLES

We shall now investigate the linear dynamical stability of
a stationary solution of the damped barotropic Euler-Poisson
system (28) and (29) satisfying the condition of hydrostatic
balance (32). We shall determine in particular the equation of
pulsations satisfied by a small perturbation around this equi-
librium state. We shall investigate the influence of the fric-
tion parameter ¢ on the pulsation period and make the con-
nection between the standard Euler-Poisson system
(hyperbolic) obtained for &=0 and the generalized
Smoluchowski-Poisson system (parabolic) obtained for
&— 4. The linearized damped Euler-Poisson equations are

98
2P 4V - (pdu) =0, (78)
ot
dou ,
P =T V(p'(p)dp) — pV P — 6pVD - Epou,  (79)
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ASD =5,Gdp. (80)

Considering spherically symmetric systems and writing the

evolution of the perturbation as dp~ eV, we get
Nép+ %%(rd_lpéu):o, (81)
Apdu=— %(p’(p)tsp) - p% - 6p% - épéu, (82)
%%(%’-‘%) =S5,Gdp. (83)

As in paper I, we introduce the function g(r) defined by

1 dq
op= —. 84
P Sdr -1 dr ( )
The continuity equation then yields
N
du=——I (85)
Sapr

After some elementary transformations similar to those of
paper I, Eq. (82) can be put in the form

g( p'(p) d_q>+@_m+§)
dr Sdprd_] dr Pl Sg,prd_l 9

The case of barotropic stars described by the Euler-Poisson
system corresponds to £=0 [1,25-27]. The case of self-
gravitating Brownian particles described by the generalized
Smoluchowski-Poisson system is recovered for £\ (see
[13] and paper I). We can therefore use the results of paper I
by making the substitution é\ — A(\+§). Therefore, an ap-
proximate analytical expression for the eigenvalue A is given
by

(86)

)\()\+§)=(d7+2—2d)(d—2)%/ d+2), (87)

GM?
I

AMA+E=-(y-1) (d=2). (88)
The friction coefficient & affects the evolution of the insta-
bility but it does not change the instability threshold [deter-
mined by the sign of the LHS of Egs. (87) and (88)]. The
unstable case corresponds to N(A+&)=0>0. The two eigen-
values are

—Ex\VE€+407

A=
- 2

(89)

Since A, >0, we see that the perturbation grows exponen-
tially rapidly as e™+. The stable case corresponds to A(\
+&)=-02<0. The two eigenvalues are

—_ExN\E—
)\1=%402~ (90)

If £-402=0, then A+ <0 and the perturbation decreases
exponentially rapidly without oscillating. This is the case in
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particular for Brownian particles described by the Smolu-
chowski equation (¢§— + ) for which A\=—0?/¢& (paper I).
Alternatively, if &-40°<0, then \,=(-éxiV4a>—&)/2
and we have slowly damped oscillations with a pulsation @
=1V40°—& and a damping rate ¢/2. This is the case in
particular for barotropic stars (é=0) which oscillate with pul-
sation w=0 without attenuation. The separation between
these two regimes (pure damping versus damped oscilla-
tions) is obtained for ¢é=20 at which w=0. This suggests
introducing the dimensionless parameter

_ &
F=>\(>\+§)’

(1)

measuring the efficiency of the friction force. The critical
values are F=0 and F=-4. If F<-4, the system is stable
and a perturbation is damped out exponentially rapidly with-
out oscillating. If -4 <F <0, the system is stable and a per-
turbation exhibits damped oscillations. The pulsation van-
ishes for F=-4, and the damping rate vanishes for F'=0. For
F>0, the system is unstable. Using Egs. (87) and (88), the
parameter defined in Eq. (91) is explicitly given by

e
"Gy W (d=3), (92)
B I _
7_1GM2 (d_2)3 (93)
F= li[ d=1 94)
=W (d=1). (

Dimensionally, this parameter scales as |F|~&RY/GM. It
can also be written |F| ~ (&t),)* where t;,~ 1/1pG is the dy-
namical time [1]. The dynamical stability of a homogeneous
system (for a general form of potential of interaction) is
treated in Appendix C.

V. CONCLUSION

In this paper, we have introduced general models of self-
gravitating Brownian particles (stochastic N body, kinetic,
hydrodynamic, etc.) that relax the simplifying assumptions
that are usually considered: mean-field approximation for
N— +00 (thermodynamic limit) and overdamped approxima-
tion for £&— +oo (strong friction limit). These general models
show the connection between previously considered models
and offer a unifying framework to study these systems. We
have focused here on the case of self-gravitating systems but
most of our results also apply to the problem of chemotaxis
in biology. This will be specifically considered in another
paper where we discuss inertial models of bacterial popula-
tions.

It should be emphasized that the Brownian model (1) and
(2) contains the standard Hamiltonian model of stellar dy-
namics [1] as a special case since the Langevin equations
reduce to the Hamilton equations for é&=D=0. We expect
therefore to have different regimes depending on the value of
the parameters. To characterize these regimes properly, it is
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useful to introduce different time scales: (i) The dynamical
time tp~1/\pG (Kepler time) is the typical period of an
orbit or a typical free-fall time [1]. (ii) The collisional relax-
ation time ty~ (N/In N)t;, (Chandrasekhar time) is the typi-
cal time it takes a stellar system (Hamiltonian) to relax to the
Boltzmann distribution ¢ "€ due to close encounters. This
relaxation is due to finite-N effects [31]. (iii) The friction
time ty~ &' (Kramers time) is the typical time it takes a
Brownian system to thermalize—i.e., to have its velocity dis-

tribution close to the Maxwellian e/ [32]. This thermal-
ization is due to the combined effect of imposed friction and
diffusion in the Langevin model (1) and (2). It is due to a
thermal bath (of nongravitational origin), not to collisions
(finite-N effects). We can now distinguish different cases.

(i) The case rp<tg<<ty (£§—0) corresponds to Hamil-
tonian systems. For r<<tp, the system is described by the
Vlasov-Poisson system. There is first a phase of violent col-
lisionless relaxation on a time scale ~t, leading to a quasis-
tationary state (QSS) in mechanical equilibrium. This is a
stable stationary solution of the Vlasov equation (on the
coarse-grained scale), which is usually not described by the
Boltzmann distribution. On a longer time scale fg
~(N/In N)t, the encounters between stars (due to finite-N
effects) have the tendency to drive the system towards a
statistical equilibrium state described by the Boltzmann dis-
tribution. In reality, this process is hampered by the escape of
stars and the gravothermal catastrophe. The collisional evo-
lution of the system is described by the Landau-Poisson sys-
tem which is the 1/N correction to the Vlasov limit (it
singles out the Boltzmann distribution among all stationary
solutions of the Vlasov equation) [12]. In fact, due to the
time-scale separation between the phase of violent relaxation
(inertial effects) and the phase of collisional relaxation
(finite-N effects), we can consider for intermediate times that
the distribution function is a quasistationary solution of the
Vlasov equation of the form f=f(e,) (for spherical systems)
that slowly evolves under the action of close encounters ac-
cording to the orbit-averaged Landau equation (traditionally
called orbit-averaged Fokker-Planck equation). This implies
that the lifetime of the QSS is long as it increases as a power
of N. It slowly evolves under the effect of encounters which
act as a perturbation of order 1/N with N> 1. Therefore, the
system first reaches a state of mechanical equilibrium
(through violent relaxation), then a state of thermal equilib-
rium (through stellar encounters). These different phases of
the dynamical evolution of Hamiltonian stellar systems have
been studied by astrophysicists for a long time [1].

(ii) The case tp<tp<<tp (é— +) corresponds to the
overdamped limit of the Brownian model. The velocities first
relax towards the Maxwellian distribution on a time scale
tg~ & (due to the thermal bath), and the density relaxes
towards a state of mechanical equilibrium on a longer time
scale (Smoluchowski diffusive time). Therefore, the system
first reaches a state of thermal equilibrium (because of the
terms of friction and noise in the Langevin equations), then a
state of mechanical equilibrium (through inertial effects).
This overdamped regime, described by the Smoluchowski-
Poisson system, has been studied in our series of papers
[4-11].

066104-9



P.-1 CHAVANIS AND C. SIRE

(iii) Finally, there is an interesting case t, <<tz <<tg, which
has not yet been studied. In that case, there is first a phase of
violent relaxation on a time scale ~7j leading to a QSS in
mechanical equilibrium like in case (i). This phase is fol-
lowed by a thermalization leading to the Boltzmann distribu-
tion on a time scale 153~ & ! due to the thermal bath—i.e., the
combined effect of imposed friction and diffusion in the
Langevin model (1) and (2)—not to “collisions” (finite-N
effects) as in case (i). The first phase is described by the
Vlasov-Poisson system and the second phase by the
Kramers-Poisson system. For £—0 [but &> (In N/N)tz,l]
there is a time-scale separation between the phase of violent
relaxation and the phase of Brownian relaxation. Similarly to
case (i), we can consider for intermediate times that the dis-
tribution function is a quasistationary solution of the Vlasov
equation of the form f=f(e,r) (for spherical systems) that
slowly evolves under the action of imposed friction and dif-
fusion (thermal bath, not collisions) according to the orbit-
averaged Kramers equation derived in Sec. II F. Since the
Brownian time scale f3~ &' is independent of N, this im-
plies that the lifetime of the QSS in this regime is indepen-
dent of N. Furthermore, it is shorter than in case (i) if &
>(nN /N)tz)l. Therefore, the system first reaches a state of
mechanical equilibrium (through violent relaxation), then a
state of thermal equilibrium (through the effect of imposed
fluctuation and dissipation—i.e., the thermal bath). This is
the opposite situation to case (ii). The study of the orbit-
averaged Kramers equation will be considered in a future
work. Note that if 75 and t; are comparable, one must take
into account simultaneously the effect of the thermal bath
(friction and random force) and the effect of collisions
(finite-N effects). This is another interesting case. Finally, we
stress that these different regimes should be observed for
other potentials of interaction u(Jr—r’|) than the gravita-
tional one (e.g., for the HMF and BMF models [33]). Kinetic
theories of Hamiltonian and Brownian particles with long-
range interactions are discussed in [12] at a general level.

APPENDIX A: EIGENVALUE EQUATION FOR
POLYTROPES

In the case of a polytropic equation of state, we can put
the eigenvalue equation (86) in a dimensionless form [26]

d( e dq) ng nQ?
e [ 1 PP : Al
d§< g ag) e gt (A
where 6(&) in the Emden function [34] and
NON
Q2 — ﬂ (AZ)
SaGpo

is the dimensionless eigenvalue. This relation shows that the
dimensional eigenvalue scales as N(\+ &)« Gp, where p, is
the central density. Now, for a polytrope, the central density
is connected to the mean density p by a proportionality con-
stant depending only on the polytropic index n [34]. There-
fore, we also have N(\ + &) = Gp.
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APPENDIX B: THE EXACT VIRIAL THEOREM IN 4
DIMENSIONS

We consider N Brownian particles with mass m,, in gravi-
tational interaction. Their equations of motion are

K=

B#a |I‘ﬁ—l'

Gm B(xiﬁ - x7)

i — &+ \2D,RY1).  (B1)

Here, the Greek letters refer to the particles and the Latin
letters to the coordinates of space. For simplicity, we have
assumed that the friction coefficient £ is the same for all the
particles but this assumption can be relaxed easily (see be-
low). The diffusion coefficient is given by the Einstein for-
mula D, =&kgT/m, The multispecies Smoluchowski-
Poisson system has been studied in [11]. In this appendix, we
establish the exact virial theorem associated with the sto-
chastic equations (B1). The moment of inertia tensor is de-
fined by

L= 2 mx{x. (B2)
3
We introduce the kinetic energy tensor
1 caa
K= 52 MX; X; (B3)
a
and the potential energy tensor
(P = x¢
Wij = G E mamﬁLdL)
a*p |rB - ra|
1 x& = xP)(x¥ = xP
=—_G2 mamﬁ( L l)( d ), (B4)
2 .z B |rﬁ - l'a|

where the second equality results from simple algebraic ma-
nipulations obtained by exchanging the dummy variables «
and B. Taking the second derivative of Eq. (B2), using the
equation of motion (B1), and averaging over the noise and
on statistical realizations, we get

1 .. 1. 1
5(11',‘) + 5§<Iij> = 2<Kij> + <Wij> - E § (Pikxj + ijxi)dsk,
(B5)

where we have included the virial of the pressure force F;
=P;AS, on the boundary of a box: (iij)b(,x:Eboan(Ff’xj’?‘
+Fj-“x?)=Eb(,x2a(P§<xf+Pkaf’)ASk.3 The scalar virial theo-
rem is obtained by contracting the indices

2D+ 58D =20+ V) - § Pacdsi, (B)

where

3Note that if the particles have a different friction parameter &,,

the term ¢ is replaced by 2 p€am (X% +x('%) which can also be

. J
written 2,&1;; ; where (s) denotes the different species of particles
and /;;

ij,s 18 the moment of inertia due to particles of species s.
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1
[=X myrs, K= EE Mol (B7)

are the moment of inertia and the kinetic energy. On the
other hand,

1 Mg
Wii =- _G a-2- (BS)
2 a#p |r,B - ra|

For d #2, we find that
Wii = (d - 2)W, (Bg)
where W is the potential energy:

A

mamﬁ

- -2 2, |rﬁ—ra|d_2' (B10)
In that case, the scalar virial theorem reads
1. 1 .
3D+ 80 =200+ (0= 20 § P
(B11)

For Hamiltonian systems (D=£=0), the total energy E=K
+ W is conserved. Hence, the virial theorem can be written in
an unbounded domain (P=0):

1.
SI=2K+ (d-2)W=2E+(d-HW. (B12)

This is the extension of the usual virial theorem in d dimen-
sions (this equation is exact without averages). We note that
the dimension d=4 is critical as also noticed in [35] using

different arguments. In that case, [=4E which yields after
integration I=2Ef*+C,t+C,. For E>0, [— +, indicating
that the system evaporates. For E<<Q, I goes to zero in a
finite time, indicating that the system forms a Dirac peak in a
finite time. More generally, for d=4, since (d—4)W<0, we
have I<2Et*+C,t+C, so that the system forms a Dirac peak
in a finite time if £<<0 (this remains true for a box-confined
system). Therefore, self-gravitating systems with E<<0 are
not stable in a space of dimension d=4.The study in Ref.
[35] indicates that this observation remains true even if quan-
tum effects (Pauli exclusion principle) are taken into ac-
count. This is a striking result because quantum mechanics
stabilizes matter against gravitational collapse in d<<4 [36].
For 2<d=<4, since (d—-4)W=0 we conclude, according to
Eq. (B12), that the system evaporates if £>0 while an equi-
librium is possible (but not compulsory) if E<<0. Finally, for
d<2, since W>0, the energy is necessary positive (E>0).
Since (d—4)W<0 an equilibrium state is possible.
For d=2, we have the simple result

1
W,=-—=-G . B13
ii 2 E mamﬂ ( )

a*

For equal-mass particles,
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1
W, =— EGN(N— 1)m?, (B14)
which reduces to
GM?
Wii = - N (B 15)
2
for N> 1. We also note that
> mamB=M2—Emi. (B16)

a*f a

The first term is of order N?m? and the second of order Nm?
(where m is a typical mass). Therefore, in the mean-field
limit N— +0, we recover Eq. (B15) even for a multicompo-
nents system; cf [11].

At equilibrium, the virial theorem (B6) reduces to

2(K) +(W;;) = jg PixidSy. (B17)
If the system is at statistical equilibrium, then <K>=§NkBT
and P;;=pd;; with p=3p kpT/m[11]. Then, introducing the
notation (26) of paper I, we get

dNkyT + (W) =dPV. (B18)

For an ideal gas without self-gravity (W;;=0), we recover the
perfect gas law PV=NkT. Alternatively, for a self-
gravitating gas in two dimensions, using Eq. (B15), we get
the exact equation of state

PV=Nky(T-T,), (B19)

with the exact critical temperature

Gzaqﬁﬁmamﬁ

kT, =
Ble AN

(B20)

For equal-mass particles, we get

2

G
keT.==,~(N=1), (B21)

as in Eq. (77). In the mean-field limit

GM?
kT, = ——.

AN (B22)

We now consider the strong-friction limit &é— +%. To
leading order in 1/§, the N-body distribution is given by

Py(r, vy, ... T, Vpst) = e‘ﬁElZ:lma”iﬂCI)N(rl, N Y5
+0(1/8), (B23)

as can be deduced from the multispecies N-body Fokker-
Planck equation [11] generalizing Eq. (4) (this distribution is
obtained by requiring that the Fokker-Planck collision term
remains finite when D, &— +). From this expression, we
find that P,=pd; with p== pksT/m and (K;)=5NksT5;
even for the out-of-equilibrium problem. From Eq. (B5), we
obtain the overdamped virial theorem for a self-gravitating
Brownian gas:
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1 . 1
E§<Iij> =(W,j) + NkgT5;; — 5 jg p(Oyx; + 8x;)dS.. (B24)
We can obtain this result from a different manner. In the
strong friction limit £€— +oo, the inertial term in Eq. (B1) can
be neglected so that the stochastic equations of motion re-
duce to

Gmg(xP - x® —
x;y: Moy 2 —|L|dl) + \r’ZDLR;I(Z), (B25)
pra |Tp—Tq

where D! =kzT, and u,=1/&m,. Taking the derivative of
the tensor of inertia (B2) and using Eq. (B25), we get

2 —
iy= EW,, + 2 me\2D[XRY () + x{RY(D)]. (B26)

Now, averaging over the noise using (xlf’R‘;?‘>=v2D"15,»j, and
on statistical realizations, we recover Eq. (B24). The scalar
virial theorem reads

1.

55{1) = dNkgT +{(W;;) — dPV, (B27)
where P is defined as in paper L. This is similar to Eq. (32) of
paper I obtained from the SP system but now W, is given by
Eq. (B8). In particular, in d=2, using Eq. (B13) we obtain

%g(i) = 2Nky(T-T,) - 2PV, (B28)

with the exact critical temperature (B20).

APPENDIX C: DYNAMICAL STABILITY OF
HOMOGENEOUS SYSTEMS

In this appendix, we study the linear dynamical stability
of a stationary solution of the damped barotropic Euler equa-
tions (28) and (29), which is infinite and homogeneous—i.e.,
po(r)=p and uy=0. For sake of generality, we consider a
potential of the form

d(r,2) :f u(r—r")p(r',t)dr’, (C1)
where u(|r—r']) is an arbitrary binary potential of the inter-
action. We shall thus obtain a generalization of the Jeans
instability criterion. We note that an infinite homogeneous
medium is a stationary solution of the damped barotropic
Euler equations provided that it satisfies the condition of
hydrostatic balance Vpy+p,V®,=0 which reduces to Vd,,
=0. With Eq. (C1) this can be written

du
f—dx=0 or fu(x)dx< o,
Jx

We shall assume that this condition is fulfilled. We note that
for the gravitational potential, this condition is not fulfilled
since V- [Vudx=[Audx=S,G [ 8x)dx=S,G#0. Still, the
equations for the perturbation are well posed mathematically
and, neglecting the above-mentioned inconsistency at zeroth
order, can be considered as a first step to investigate the

(C2)
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dynamical stability of a gravitational system. This is the so-
called Jeans swindle [1]. The linearized damped barotropic
Euler equations can be written

a9
2P LoV - su=0, (C3)
ot
Jo
pa—tll =—c2Adp - pASD - £pébu, (C4)
oD(r,t) = f u(r—r")dp(r’,t)dr’, (C3)

where we have introduced the velocity of sound cf: p'(p).
They can be combined to give

Fop  Idp 5

—+ & =cASp+ pASD, C6
op TE T, =CAdtp (Co)
with 8&=u* 8p. Looking for solutions of the form
Sp(r,1) = J (K, w)e"* TN dkdw, (C7)
we obtain the general dispersion relation
o(w+i&) = k> + (2m) (k) pk>. (C8)

Introducing A=—iw and §(k) =—(2m7)%i(k), this can be rewrit-
ten

A2+ EN — K} pi(k) — 2] = 0. (C9)

The solutions are A,=3(~¢+\A) with A(k)=&+4k*[pi (k)
—cf]. If c§<p6(k), then A(k)>§&>0 and the system is un-
stable as N, =3(=&+VA)>0. If ¢<pi(k), either A(k)<0
and R,(\)=—£/2 or 0<A(k) <&, implying N, <0, so the sys-
tem is stable. Therefore, the system is stable if

cf, > po(k) (C10)

and unstable otherwise. For attractive potentials ¢(k) >0,
this gives rise to the existence of a critical point as discussed
in [12]. Indeed, a necessary condition of instability is that

If this condition is fulfilled, the range of unstable wave-
lengths is determined by

6(k) > c2lp (C12)

and their growth rate is \,(k). For the Euler equations (¢
=0), the dispersion relation reduces to

o’ = 2k + (2m) (k) pk?. (C13)

In the unstable case the perturbation grows exponentially,
and in the stable case the perturbation presents undamped
oscillations. In the overdamped limit of the model é— +

(Smoluchowski), the dispersion relation reduces to
iéw= 22+ 2m)%ik) pk?, (C14)

which can be obtained directly from the generalized Smolu-
chowski equation (35). In the unstable case the perturbation
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grows exponentially and in the stable case the perturbation
decreases exponentially. The intermediate case of finite fric-
tion can be treated as in Sec. IV but explicit results demand
to specify the potential of interaction.

For the attractive Yukawa potential 6(k)=S,G/ (k2+k(2))
[12], we find that the system is unstable if ¢Z<(c2),;
=S,Gp/ kﬁ for the wave vectors such that

S,G
k< k= \/”’C—zp—kg.

N

(C15)

The growth rate \,(k) is maximum for k2=(S,Gpk3/c?)"?

—k2, and its value A+=\,(ks) is given by

PHYSICAL REVIEW E 73, 066104 (2006)

DN = — £+ VE +48,Gp(1 —KYS,Gp)?.  (C16)

For ¢;=0 (cold systems), we have k,,,=k:=+% and M\
=]§(—§+ VE+4S,Gp). The system is most unstable at small
wavelengths. For k=0 (gravitational potential), we have
(D) eri=+%, kpax=k;=(S,Gplc})"?> (Jeans length), k.=0,
and )\*zé(—§+ VE+45,Gp). The system is most unstable at
large wavelengths. For &=0 (Euler), \.=(S,Gp)"*(1
—\c’k3/S,Gp), and for E—+% (Smoluchowski), A
=(S,Gp/ &)(1-\c3/S,Gp)?. Other examples of potentials
of interaction are given in [12].
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